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MicroRNAs (miRNAs) are small, endogenous noncodingRNAs that regulate a variety of biological processes such as differentiation,
development, and survival. Recent studies suggest that miRNAs are dysregulated in cancer and play critical roles in cancer
initiation, progression, and chemoresistance. Therefore, exploitation of miRNAs as targets for cancer prevention and therapy
could be a promising approach. Extensive evidence suggests that many naturally occurring phytochemicals regulate the expression
of numerous miRNAs involved in the pathobiology of cancer. Therefore, an understanding of the regulation of miRNAs by
phytochemicals in cancer, their underlying molecular mechanisms, and functional consequences on tumor pathophysiology may
be useful in formulating novel strategies to combat this devastating disease. These aspects are discussed in this review paper with
an objective of highlighting the significance of these observations from the translational standpoint.

1. Introduction

MicroRNAs (miRNAs) are endogenous, small noncoding
RNA molecules that posttranscriptionally regulate gene
expression. miRNAs bind to the 3󸀠-UTRs of target mRNA
with partial or complete complementarity, thus causing trans-
lational repression or target messenger RNA (mRNA) degra-
dation [1]. An individual miRNA can regulate the expression
of multiple genes; conversely, a single mRNA can be targeted
by many miRNAs. To date, about 2,469 miRNAs have been
identified in humans [2], and more than one-third of all
human genes are potentially regulated bymiRNAs [3]. Exten-
sive studies have shown thatmiRNAs not only are involved in
the process of cell development and differentiation but also
play a critical role in carcinogenesis [4]. Emerging data sug-
gest that several classes of naturally occurring, plant-derived
compounds (phytochemicals) could potentially regulate the
expression of several miRNAs involved in cancer.

Phytochemicals are nonnutritive plant chemicals that
have various applications including anti-inflammatory and

anticancer. These phytochemicals are widely distributed in
various fruits, vegetables, herbs, beverages, and many other
dietary supplements. Numerous studies have demonstrated
that the intake of fruit- and vegetable-rich foods decreases
the occurrence of cancer [5–7]. So far, more than 10,000
phytochemicals have been identified [8], and a significant
number of phytochemicals show anticancer potential with no
or minimal toxicity to normal cells [9]. Interestingly, around
47% of FDA approved anticancer drugs are derived from
plants [10, 11]. Moreover, these phytochemicals could be used
as a single chemotherapeutic agent or in association with
standard anticancer drugs. Phytochemicals can increase the
efficacy of anticancer drugs synergistically, while reducing
the toxic side effects of the standard chemotherapeutic
drugs [12, 13]. These phytochemicals exert their anticancer
effects through modulation of multiple molecular targets
affecting various signaling pathways [8, 14, 15]. In the present
review paper, we focus our attention on the regulation of
miRNAs by some of the phytochemicals such as resveratrol,
epigallocatechin-3-gallate (EGCG), curcumin, camptothecin
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(CPT), and diindolylmethane (DIM) for cancer prevention
and therapy.

2. Biogenesis of miRNA and Mechanism of
Gene Silencing

The biosynthesis of miRNAs begins with gene transcription
by RNA polymerase II or RNA polymerase III into primary
miRNA (pri-miRNA) transcripts inside the nucleus. These
pri-miRNAs are comprised of either a cluster or single miR-
NAs folded into a hairpin stem-like structure [1]. This long
pri-miRNA is processed by the sequential, endonucleolytic
cleavage of the transcript by the microprocessor complex,
containing drosha and DGCR8, into a 65–70-nucleotide
precursor miRNA (pre-miRNA). This pre-miRNA is then
exported from the nucleus to the cytoplasm by the nuclear
export factor Exportin-5/Ran-GTP and cleaved by RNase III
endonuclease, Dicer/TRBP, and argonaute 2 (Ago2) miRNA
duplex [16] into an ∼22-nucleotide product. This duplex
miRNA then unwinds to generate a single-stranded miRNA.
One of the strands enters in the RNA-induced silencing
complex (RISC) along with Ago proteins and directs the
complex to target mRNA. This binding causes either target
mRNA degradation or inhibition of translation [1].

3. Biological Significance of miRNAs in
Cancer: Tumor Suppressors and Oncogenes

Based on in vitro and in vivo studies, miRNAs have been
characterized as tumor suppressors or oncogenes. In this
section we will discuss some of the reports from a long
list of tumor suppressor/oncogenic miRNAs that have been
experimentally validated.

Numerous studies have shown that the expression of the
tumor suppressor Let-7 is significantly downregulated or lost
in various cancers [17–19]. It has been shown that restoration
of Let-7 inhibited tumor growth in a K-RAS lung cancer
model [20]. Furthermore, decreased expression of let-7 corre-
lated with shorter survival in non-small-cell lung cancer [21].
OthermiRNAs such asmiR-15a andmiR-16 are either deleted
or downregulated in most cases of the chronic lymphocytic
leukemia, and their overexpression induced apoptosis [22].
Moreover, it has been reported that miR-16 and miR-15
were downregulated in multidrug-resistant human gastric
cancer cells, and restoration of these miRNAs sensitized the
cancer cells to chemotherapeutic drugs [23]. Takeshita and
coworkers demonstrated the growth inhibitory role of miR-
16 in prostate cancer cells [24]. The levels of miR-34 are
significantly decreased in various cancers, and its restoration
was reported to inhibit angiogenesis andmalignant behavior,
yet at the same time it induced apoptosis and cell cycle arrest
[25, 26]. Additionally, the role of miR-34 in the inhibition of
tumor-initiating cells has also been suggested [27]. In mixed
lineage leukemia, the overexpression of miR-495 inhibited
cell viability and reduced leukemogenesis in vivo [28]. In
one of our recent studies, we investigated the significance
of miR-150 downregulation in pancreatic cancer [29]. We
demonstrated that the restoration of miR-150 inhibited the

MUC4 oncoprotein. Consequently, the growth and malig-
nant potential of pancreatic cancer cells were suppressed
[29, 30]. The role of miR-451 as a tumor suppressor miRNA
by inhibiting cancer cell migration, invasion, and growth
is well known [31–33]. Further, Kovalchuk and coworkers
demonstrated that miR-451 sensitizes MCF-7/DOX-resistant
cells to doxorubicin cytotoxicity [34]. Xu and coworkers
demonstrated that miR-203 overexpression effectively inhib-
ited cell proliferation and induced apoptosis and cell cycle
arrest. Moreover, its overexpression also inhibited tumor
growth in a mouse model [35].

To date, several miRNAs have been identified that act as
oncogenes [36]. miR-17-92 is an oncogenic gene cluster [37];
restoration of this cluster in MYC-driven B-cell lymphomas
suppressed apoptosis and enhanced tumorigenicity [37]. Ma
et al., 2010, demonstrated that miR-27a, which is overex-
pressed in pancreatic cancer, plays an oncogenic role by
targeting tumor suppressor Spry2 [38]. Inhibition of miR-27a
decreased growth, clonogenicity, andmigration of pancreatic
cancer cells. miR-21 is a widely studied oncogenic miRNA
which is frequently overexpressed in various malignancies
[39, 40]. Inactivation ofmiR-21 results in apoptosis induction,
inhibition of growth, and malignant progression [39–41]. In
a transgenic mice model, miR-155 induced polyclonal pre-B-
cell proliferation resulting in B-cell leukemia [42]. miR-373
and miR-520c are known to promote migration, invasion,
and metastasis of breast cancer cells by targeting CD44
expression [43]. Moreover, the roles of miR-373 and miR-
520c in promoting migration and invasion of prostate cancer
cells have also been reported [44]. In pancreatic cancer,
miR-424-5p is overexpressed, and its high expression has
been reported to be associated with enhanced proliferation
and apoptosis resistance through downregulating SOCS6
[45]. miR-10b is overexpressed in various malignancies and
promotes cell migration, invasion, and metastasis [46–48].
Moreover, a high expression of miR-10b correlated with
disease progression [47, 49].miR-221 andmiR-222 are known
to facilitate tumor cell growth, malignant potential, and EMT
inmultiple malignancies such as prostate, breast, and thyroid
cancer [50–53].

Moreover, overexpression of miR-221 and miR-222 was
shown to impart tamoxifen-resistance in breast cancer cells
[54]. Altogether, these findings indicate that miRNAs play
important roles as oncogenes in cancer cells.

4. Modulation of miRNAs by Phytochemicals

miRNAs are being considered as attractive targets for cancer
prevention and therapy due to their oncogenic or tumor
suppressor activities. Various studies have suggested that the
modulation of miRNAs serves as one of the key mechanisms
in the anticancer activities of a variety of phytochemicals
(Table 1). Below, we describe some of the phytochemicals
which are known to regulate miRNA expression in cancer.

4.1. Resveratrol. Resveratrol is a stilbenoid that has been
shown to have anticancer activities against various cancers
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Table 1: Phytochemical-mediated regulation of miRNAs in cancer. Modulation of miRNA expression by certain phytochemical agents and
effect on cancer pathobiology.

Phytochemical miRNA Function Reference

Resveratrol ↑ miR-141, miR-663, and miR-200c Invasiveness, EMT, and metastasis [57–61, 114]
↓ miR-17, miR-21, miR-25, miR-92a-2, miR-103-1, and
miR-103-2

EGCG
↑ miR-16, miR-210, miR-7-1, miR-34a, and miR-99a Apoptosis [62–66]
↓ miR-21, miR-98-5p, miR-92, miR-93, and miR-106b Proliferation, anchorage-independent

growth, and drug resistance

Genistein ↑ miR-16 Apoptosis [67, 68]
↓ miR-221 and miR-222 Growth

Curcumin ↑ miR-15a, miR-16, and miR-186∗ Apoptosis [80, 82, 83]
↓ miR-21 Metastasis

Quercetin ↑ let-7 Growth
Apoptosis [88, 89]

↓ miR-27a
Camptothecin ↓ miR-125b Apoptosis [92]

DIM ↑ miR-21, miR-200b, miR-200c, let-7b, let-7c, let-7d, let-7e,
and miR-146a

Growth, EMT, drug resistance, invasion,
and metastasis [95–97]

including breast cancer, lung cancer, glioma, prostate can-
cer, colon cancer, and neuroblastoma [55, 56]. Resveratrol
reduced the expression of numerous oncogenic miRNAs,
namely, miR-17, miR-21, miR-25, miR-92a-2, miR-103-1, and
miR-103-2, in human colon cancer cells [57]. Moreover,
in the same study, tumor suppressor miR-663 levels were
shown to be restored in human colon cancer cells after the
treatment of resveratrol. In another study, Hagiwara et al.
reported that resveratrol treatment upregulated miR-141 and
resulted in a significant reduction of invasiveness, whereas
resveratrol-induced miR-200c expression caused reversal of
EMT through downregulation of Zeb1 and upregulation of
E-cadherin [58]. It has been demonstrated that the anti-
cancer effect of resveratrol on pancreatic cancer cells was
due to inhibition of oncogenic miR-21 [59]. Moreover, the
synergistic antitumor activity of resveratrol andmiR-200c has
been demonstrated in human lung cancer cells [60]. In colon
cancer cells, resveratrol inhibited the cell growth and induced
apoptosis through upregulating miR-34a expression [61].

4.2. Epigallocatechin-3-gallate (EGCG). Epigallocatechin-3-
gallate is a polyphenol flavonoid that possesses significant
antioxidant and anticancer properties. It has been shown
that EGCG induces apoptosis in hepatocellular carcinoma
through enhanced expression of miR-16 [62]. Increased
expression of miR-16 resulted in inhibition of its target
antiapoptotic Bcl-2, followed by mitochondrial dysfunction,
cytochrome c release, and subsequent apoptosis. EGCG also
inhibited the expression of miR-21 followed by repression of
androgen receptor (AR) signaling and, consequently, a reduc-
tion of prostate cancer cell growth [63]. In lung cancer, EGCG
upregulated the expression of miR-210, which led to the inhi-
bition of proliferation and anchorage-independent growth
[64]. EGCG enhanced the efficacy of cisplatin through down-
regulation of miR-98-5p in A549 non-small lung cancer cells
[65]. A combination of N-(4-hydroxyphenyl) retinamide and

EGCG decreased the expression of oncogenic miRs (miR-
92, miR-93, and miR-106b) and enhanced the expression
of tumor suppressor miRs (miR-7-1, miR-34a, and miR-
99a) which resulted in growth inhibitory effects in human
malignant neuroblastoma cells [66].

4.3. Genistein. Genistein is another important polyphenol
that showed significant anticancer effects through the regula-
tion of miRNAs. Genistein treatment was shown to enhance
apoptosis synergistically with miR-16 in human chronic
lymphocytic leukemia cells [67]. In a study onprostate cancer,
genistein both downregulated miR-221 and miR-222 and
restored tumor suppressor gene aplasia Ras homologmember
I (ARHI) expression, which ultimately resulted in anticancer
effects [68]. In another study on prostate cancer, genistein
inhibited the migration and invasion of PC3 and DU145
cells through downregulating oncogenic miR-151 [69]. Xu et
al. have shown that treatment of ovarian cancer cells with
genistein caused an inhibition of cell growth and migration
through suppression of miR-27a [70]. Further, genistein
has been shown to upregulate the tumor suppressor miR-
574-3p in prostate cancer cells [71]. Moreover, it has been
observed that genistein exerted its antitumor effect in prostate
cancer via downregulation of miR-1260b [72]. Genistein
treatment downregulated oncogenic miR-1260b and resulted
in inhibition ofWnt-signalling in renal cancer cells [72].miR-
223 expression was found to be downregulated in pancreatic
cancer cells after genistein treatment that correlated with cell
growth inhibition and induction of apoptosis [73]. Genistein
also plays a tumor suppressor role through inhibition of miR-
27a in pancreatic cancer cells [74].

4.4. Curcumin. Curcumin is a constituent of turmeric (Cur-
cuma longa) and has been used as an important component
of spice in Indian food and as a traditional medicine in Asian
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countries for many decades [75]. It possesses chemopreven-
tive and chemotherapeutic activities against many tumors
[75–78]. Curcumin exerts its therapeutic effects by regulating
miRNAs known to play an important role in cancer [79].
Yang et al. have shown that curcumin upregulated miR-
15a and miR-16 in MCF-7 breast cancer cells which caused
an induction of apoptosis [80]. In another study, curcumin
treatment resulted in the upregulation of tumor suppressor
miR-203 in bladder cancer that led to apoptosis induction and
diminished proliferation, migration, and invasion [81]. Cur-
cumin has also been shown to induce tumor suppressor miR-
186∗ expression to promote apoptosis in lung cancer [82].
Moreover, curcumin inhibited the transcriptional regulation
of oncogenic miR-21 in colon cancer, causing inhibition of
growth, invasion, and metastasis [83]. Zhao et al. provided
evidence that curcumin exerts its cytotoxic effects against
SKOV3 ovarian cancer cells largely through upregulation
of miR-9 [84]. Another tumor suppressor, miR181b, has
been demonstrated to be induced by curcumin, and it
inhibited breast cancer metastasis via downregulation of the
inflammatory cytokines CXCL1 and CXCL2 [85]. High levels
of miR-221 expression have been correlated with shorter
survival in pancreatic cancer patients, suggesting that miR-
221 could be an oncogenic miRNA [86]. In the same study,
the synthetic curcumin analogue (CDF) has been found
to suppress the expression of miR-221 and upregulate the
expression of PTEN, p27 (kip1), p57 (kip2), and PUMA,
followed by inhibition of cell proliferation and migration of
pancreatic cancer cells.Thus, altogether, these studies provide
evidence that curcumin modulates the expression of miRNA
signatures in cancer cells to confer its anticancer activity.

4.5. Quercetin. Intake of a quercetin-rich diet has been
demonstrated to modulate the expression of 48 unique
miRNAs. These miRNAs have been reported to decrease
tumor metastasis and invasion (miR-146a/b, 503, and 194),
inhibit cell proliferation (miR-125a, 155, let-7 family, 302c,
195, 26a, 503, and 215), induce apoptosis (miR-125a, 605, 26b,
let-7g, 34a, 491, and 16), and upregulate tumor suppressor
miRNAs (let-7 family, miR-125a, 183, 146a, 98, 19b, 106a, and
381) [87]. Del Follo-Martinez et al. reported that quercetin
treatment induced apoptosis in colorectal cancer cells when
used along with resveratrol. The underlying mechanism of
apoptosis induction is the downregulation of oncogenic
miR-27a [88]. In another study, quercetin, when used with
catechins, was shown to enhance the expression of let-7
in pancreatic cancer cells followed by K-ras inhibition and
reduction of the advancement of pancreatic cancer [89].

4.6. Camptothecin (CPT). Camptothecin, an alkaloid iso-
lated from bark of Camptotheca acuminata, is a potent
chemotherapeutic agent against a variety of tumors [90–92].
CPT was demonstrated to reduce the expression of miR-
125b significantly, which led to the upregulation of Bak1
and p53 and resulted in apoptosis of human cervical cancer
and myelogenous leukemia cells [92]. In a recent study,
camptothecin was shown to inhibit HIF-1𝛼 by enhancing the
levels of miR-155, miR-17-5p, and miR-18a in HeLa cells [93].

4.7. Diindolylmethane (DIM). Diindolylmethane is an active
compound that is generated in the stomach through the
metabolic conversion of indole-3-carbinol (I3C), present
in cruciferous vegetables [94]. DIM regulates the expres-
sion of numerous miRNAs involved in cancer development
and progression. DIM has been demonstrated to induce
the expression of certain miRNAs, such as miR-200 and let-
7 families, that led to the reversal of EMT and enhanced
chemosensitivity in gemcitabine-resistant pancreatic cancer
cells [95]. DIM also induced the expression of miR-146a,
which resulted in reduced pancreatic cancer cell invasion
via inhibition of metastasis-associated protein 2 (MTA-
2), interleukin-1 receptor-associated kinase 1 (IRAK-1), and
NF𝜅B [96]. Moreover, Jin observed that DIM inhibited
breast cancer cell growth by enhancing the expression of
miR-21 which led to the degradation of its target Cdc25A
[97]. Formulated 3,3󸀠-diindolylmethane (BR-DIM) has been
shown to be capable of downregulating miR-221, resulting in
growth inhibition of pancreatic cancer cells [86].

5. Mechanism of miRNA
Regulation by Phytochemicals

There have been several aberrantly expressed miRNAs iden-
tified in various cancer types. Unfortunately, the precise
mechanisms that regulate the normal expression of miRNAs
or their deregulation in cancer remain unclear. Growing evi-
dence suggests that aberrant transcriptional regulation, epi-
genetic changes, alterations in miRNA biosynthesis machin-
ery, mutations, or DNA copy number could contribute to
miRNA dysregulation in human cancer [98]. Experimental
studies on phytochemicals revealed that the expression of
various miRNAs can be regulated by phytochemicals. In the
following section, we provide an overview for the regulation
of miRNAs by phytochemicals through various mechanisms
such as epigenetic, transcriptional, and miRNA processing
(Figure 1).

5.1. Transcriptional Regulation of miRNAs. Various studies
indicate the involvement of certain transcription factors
in the regulation of miRNA expression and the subse-
quent modulation of pathological conditions in cancer.
Thus, transcription factor-mediated miRNA regulation is
one critical aspect of study. Several groups have observed
that phytochemicals modulate miRNA expression through
transcriptional regulation (Figure 1). Wang and coworkers
demonstrated that treatment with EGCG results in the tran-
scriptional activation ofmiR-210 in lung cancer by promoting
the binding of hypoxia inducible factor-1𝛼 (HIF-1𝛼) to the
hypoxia response element present in the promoter region of
miR-210 [64]. Transcription factor activator protein (AP-1),
an important regulator of genes involved in cell proliferation
and extracellular matrix production [99], is an upstream
regulator ofmiR-21 [100].Mudduluru and coworkers demon-
strated that curcumin inhibits the transcriptional regulation
of miR-21 by downregulating AP-1 to suppress tumor growth,
invasion, and metastasis of colorectal cancer [83]. Another
transcription factor, CCAAT/enhancer binding protein beta
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Figure 1: Mechanistic overview of miRNA regulation by phytochemicals. Phytochemicals regulate the expression of miRNAs through
modulation of transcription factors and inducing epigenetic modifications and by interfering with processes associated with miRNA
maturation.

(C/EBP-𝛽), negatively regulates tumor suppressormiR-145 by
directly interacting through the putative C/EBP-𝛽 binding
site present in the miR-145 promoter. It was also shown that
resveratrol treatment resulted in the decreased activation
of C/EBP-𝛽 which subsequently induced the expression of
miR-145 in breast cancer cells [101]. Androgen receptor
(AR) directly regulates miR-21 by binding to the miR-21
promoter in prostate cancer [102]; Siddiqui and coworkers
(2011) demonstrated that EGCG inhibited prostate cancer cell
growth by decreasing the level of AR and miR-21 [63]. A
study conducted by Hagiwara and coworkers has shown that
resveratrol transcriptionally upregulated the expression of
several tumor suppressor miRNAs such as miR-141, miR-26a,
miR-195, miR-126, miR-340, miR-34a, miR-193b, miR-335,
miR-200c, miR-497, miR-196a, and miR-125a-3p in MDA-
MB-231 breast cancer cells [58]. It is known that p53 is a tumor
suppressor gene and a transcription factor which functions
by either causing growth arrest or inducing apoptosis [103].
Emerging data suggest that p53 transcriptionally regulates
several miRNAs [104]. A number of studies have shown that
curcumin regulates the expression of several miRNAs that
are transcriptional targets of p53 such as miR-22, miR-15/16a,
miR-34, and miR-21 [80, 83, 105–108]. Considering all these
observations, it is speculated that curcumin regulates the
expression of p53, which in turn modulates the expression of
several miRNAs.

5.2. Epigenetic Regulation of miRNAs. Epigenetic regulation
is defined asmodifications of the genomewithout any change
to the nucleotide sequence. Supporting evidence suggests
that epigenetic modification, like aberrant CpG methylation
or histone modifications, contributes to the dysregulation of
gene expression in tumor cells. Pharmacologic inhibition of

DNAmethyltransferase (DNMT) causesDNAdemethylation
andupregulates the expression ofmiRNAs. Saini and cowork-
ers provided evidence that curcumin treatment resulted in
the hypomethylation of miR-203 promoter and subsequent
upregulation of miR-203, which is epigenetically silenced
in various malignancies [81]. Treatment with a curcumin
analogue, difluorinated curcumin, restored the expression of
miR-34a and miR-34c by working as a demethylating agent
in colon cancer cells [109]. Rabiau and coworkers performed
miRNA expression profiling following the treatment with
the flavonoids genistein and daidzein in prostate cancer cells
[110]. Their investigation revealed a significant upregulation
of miR-548b-5p in PC3 andmiR-15a in LNCaP cells by genis-
tein and daidzein through regulation at the epigenetic level
[110]. Zaman et al. demonstrated that miR-145 is inactivated
as a result of its promoter methylation in prostate cancer;
treatment with genistein demethylated the promoter of miR-
145 which resulted in an increased level of miR-145 [111].
In a separate study on prostate cancer, isoflavone efficiently
demethylated the promoter region of miR-29a and miR-1256
and subsequently upregulated their expression [112]. All these
observations suggest the significant role of phytochemicals in
the regulation of miRNAs at the epigenetic level (Figure 1).

5.3. Regulation of miRNA Processing by Phytochemicals.
miRNA processing can be regulated at various steps, and
any alteration in processing either increases or decreases the
level of miRNAs [113]. The role of phytochemical-modulated
expression of miRNAs through the regulation of proteins
involved in miRNA processing has been recently investi-
gated, as shown in Figure 1. Hagiwara and coworkers inves-
tigated and reported that resveratrol treatment significantly
increased the expression of Ago2 and results in enhanced
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levels of tumor suppressor miRNAs such as miR-16, miR-
141, miR-143, and miR-200c in MDA-MB-231 cells [58].
Moreover, resveratrol treatment resulted in the enhanced
level of miR-663 and pre-miR-663 by interfering with the
drosha mediated processing of pri-miR-663 that resulted in
the inhibition of miR-155, which is overexpressed in many
cancers [114]. These studies provide evidence that phyto-
chemicals regulate the expression of miRNAs epigenetically
and transcriptionally and by controlling miRNA processing.

6. Conclusion and Future Perspective

miRNAs are a novel class of gene regulators. Thus far, we
have only been able to see just a small part of the complexity
of cellular regulation by miRNAs with regard to all of the
different functions that miRNAs can perform. miRNAs are
aberrantly expressed in most cancers and this has been
correlated throughout cancer initiation and progression;
hence, miRNAs represent very attractive and novel targets
for cancer therapy. Phytochemicals display an inimitable
ability to alter the level of miRNAs involved in regulation of
cancer pathobiology by modulating the expression of miR-
NAs through a variety of mechanisms, namely, epigenetic,
transcriptional, and miRNA processing. In addition, phy-
tochemicals increase the chemosensitivity of conventional
therapeutic drugs through modulating miRNAs. As a result,
phytochemicals can be exploited for designing therapeutic
approaches in combination with conventional therapies to
improve cancer treatment and prevention strategies. Despite
the potent anticancer activities of phytochemicals, there are
some concerns such as specific targeting and bioavailability.
To overcome these hurdles in the use of phytochemicals,
different approaches are being explored, namely, chemical
modification, synthetic formulation, delivery by nanopar-
ticles, and so forth. Hence, there is a wide scope for the
development of phytochemicals into commercial drugs to
efficaciously prevent and treat cancer.
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